Refine Your Search

Topic

Search Results

Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

2012-07-01
HISTORICAL
USCAR5-4
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
Standard

Performance Specification for Ultrasonically Welded Wire/Cable Termination

2009-12-18
HISTORICAL
USCAR38
IMPORTANT NOTICE: In any intended vehicle application, if the products covered by this specification are, or may be, subjected to conditions beyond those described in this document, they must pass special tests simulating the actual conditions to be encountered before they can be considered acceptable for actual vehicle application. Products certified by their supplier as having passed specific applicable portions of this specification are not to be used in applications where conditions may exceed those for which the product has been satisfactorily tested. The Authorized Person is the final authority as to what tests are to be performed on his or her parts and for what purpose these tests are required. He or she is also the final authority for resolving any questions related to testing to this specification and to authorizing any deviations to the equipment or procedures contained in this specification.
Standard

WIRING COMPONENT DESIGN GUIDELINES

2009-07-10
HISTORICAL
USCAR12-3
This document gives general guidelines to be used during the connector design stage. Various guidelines may not apply in all situations. Therefore, sound engineering judgment must be used in their application. Consider these guidelines as the basis for connector and wiring DFMEA’s. Items in this document are grouped by DFMEA functional requirements. Groups are as follows: A Electrical Continuity B Electrical Isolation/Sealing C Device Assembly D Harness Assembly E Vehicle Assembly F Materials G Serviceability H Environmental Requirements I High Voltage (≥ 60V) Application Requirements
Standard

PERFORMANCE SPECIFICATION FOR CABLE-TO-TERMINAL ELECTRICAL CRIMPS

2008-10-20
HISTORICAL
USCAR21-2
In any intended vehicle application, if the products covered by this specification are, or may be, subjected to conditions beyond those described in this document, they must pass special tests simulating the actual conditions to be encountered before they can be considered acceptable for actual vehicle application. Products certified by their supplier as having passed specific applicable portions of this specification are not to be used in applications where conditions may exceed those for which the product has been satisfactorily tested. The Authorized Person is the final authority as to what tests are to be performed on his or her parts and for what purpose these tests are required. He or she is also the final authority for resolving any questions related to testing to this specification and to authorizing any deviations to the equipment or procedures contained in this specification.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2007-03-13
HISTORICAL
USCAR32
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2007-03-01
HISTORICAL
USCAR5-2
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. 1.1 Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. 1.2 Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales. NOTE 1: All references to temperatures relate to part core temperature and not the indicated oven air temperature. Statistical data of verifications in temperature at the center of the oven load and oven temperature shall be established to develop the oven profile.
Standard

Automotive Grade Coaxial Cable Performance Specification

2006-01-02
HISTORICAL
USCAR29
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
Standard

COAXIAL CABLE CONNECTOR INTERFACE – SQUARE OUTER CONDUCTOR

2003-03-10
HISTORICAL
USCAR19-1
This radio frequency (RF) connector interface specification is suited for unsealed automobile applications up to 2 GHz. Dimensional requirements are specified in this document to ensure interchangeability. This RF connector interface specification is intended for in-line, board mount, device mount, straight or angled applications. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE RF CONNECTOR SYSTEMS

2002-11-18
HISTORICAL
USCAR17-1
Procedures included within this specification are intended to cover performance testing at all phases of development, production, and field analysis of electrical terminals, connectors and components for coaxial cable connection systems (hereafter referred to as RF connectors) in road vehicle applications. The intent of this specification is to qualify RF connectors that operate at frequencies greater than 200 MHz. This specification does not apply to single conductor wire or twisted pair connection systems. The RF connection system will be qualified for a specific coaxial cable; the qualified coaxial cable and frequency range of interest must be listed on the connector drawing. Changing coaxial cable necessitates re-qualification.
Standard

ROAD VEHICLES – 60 V AND 600 V SINGLE CORE (ISO/METRIC) CABLES – DIMENSIONS, TEST METHODS AND REQUIREMENTS

2002-09-09
HISTORICAL
USCAR23
This International Standard specifies the dimensions, test methods, and requirements for single core 60 V cables intended for use in road vehicle applications where the nominal system voltage is ≤ (60 V DC or 25 V AC). It also specifies additional test methods and/or requirements for 600 V cables intended for use in road vehicle applications where the nominal system voltage is > (60 V DC or 25 V AC) to ≤ (600 V DC or 600 V AC). It also applies to individual cores in multi-core cables. See ISO 6722 for “Temperature Class Ratings”.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2002-08-22
HISTORICAL
USCAR5-1
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel. It also defines the relief procedures required to minimize the risk of hydrogen embrittlement. SAE/USCAR-5 is intended to control the process.
Standard

COAXIAL CABLE CONNECTOR INTERFACE – SQUARE OUTER CONDUCTOR

2002-02-22
HISTORICAL
USCAR19
This radio frequency (RF) connector interface specification is suited for unsealed automobile applications up to 2 GHz. Dimensional requirements are specified in this document to ensure interchangeability. This RF connector interface specification is intended for in-line, board mount, device mount, straight or angled applications. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE RF CONNECTOR SYTEMS

2002-02-22
HISTORICAL
USCAR17
Procedures included within this specification are intended to cover performance testing at all phases of development, production, and field analysis of electrical terminals, connectors and components for coaxial cable connection systems (hereafter referred to as RF connectors) in road vehicle applications. The intent of this specification is to qualify RF connectors that operate at frequencies greater than 200 MHz. This specification does not apply to single conductor wire or twisted pair connection systems. The RF connection system will be qualified for specific coaxial cable; the qualified coaxial cable and frequency range of interest must be listed on the connector drawing. Changing coaxial cable necessitates re-qualification. This specification is a supplement to the SAE/USCAR-2 Performance Standard for Automotive Electrical Connector Systems and all requirements herein must be met in addition to all requirements of SAE/USCAR-2, unless otherwise specified.
Standard

WIRING COMPONENT DESIGN GUIDELINES

2001-12-01
HISTORICAL
USCAR12-2
This document gives general guidelines to be used during the connector design stage. Various guidelines may not apply in all situations. Therefore, sound engineering judgment must be used in their application. Consider these guidelines as the basis for connector and wiring DFMEA’s. Items in this document are grouped by DFMEA functional requirements. Groups are as follows: A Non-functional Drawing Requirements B Electrical Continuity C Electrical Isolation/Sealing D Device Assembly E Harness Assembly F Vehicle Assembly G Serviceability
Standard

PERFORMANCE STANDARD FOR AUTOMOTIVE ELECTRICAL CONNECTOR SYSTEMS

2001-04-01
HISTORICAL
USCAR2
Procedures included within this specification are intended to cover performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in low voltage (0 - 20 VDC) road vehicle applications. These procedures are only applicable to terminals used for In-Line, Header, and Device connector systems. They are not applicable to Edge Board connector systems, > 20 VAC or DC, or to eyelet type terminals. Note that this specification does not cover the mechanical assist portions of connectors that include such devices. The Authorized Person must provide details of any additional testing desired to validate these mechanisms as part of the test request/order.
Standard

WIRING COMPONENT DESIGN GUIDELINES

1999-07-01
HISTORICAL
USCAR12
This document gives general guidelines to be used during the connector design stage. Various guidelines may not apply in all situations. Therefore, sound engineering judgment must be used in their application. Consider these guidelines as the basis for connector and wiring DFMEA’s. Items in this document are grouped by DFMEA functional requirements. Groups are as follows: A Non-functional Drawing Requirements B Electrical Continuity C Electrical Isolation/Sealing D Device Assembly E Harness Assembly F Vehicle Assembly G Serviceability
Standard

Torque-Tension Testing and Evaluation of Fastener Finishes

1998-12-30
HISTORICAL
USCAR11
This standard provides a test method for determining the torque-tension relationship of a fastener finish as applied to a surrogate screw for the purpose of measuring the frictional characteristic of the fastener finish. The results obtained by this test shall be used as a process control attribute of the fastener finish and shall not be utilized for specific applications.
X